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SUMMARY 

A numerical investigation of the flow of two immiscible stratified fluids under an isolated keel has been 
undertaken. The investigation utilized the two-dimensional Euler equations for incompressible flow, and the 
solution of these equations has been obtained by using the well-known finite volume marker and cell 
approach. Experimental drag-force measurements are also presented for a family of two-dimensional 
topographic models of fixed height with increasing surface slopes in a two-layer density system. The range of 
flow speeds explored covers the Froude number range from subcritical to fully supercritical. The drag force 
measurements are augmented by detailed observations of the interface distortion. The results clearly show 
large drag increases arising from the internal wave systems generated in the stratified flow. Very good 
agreement has been found between the experimental and numerical results for both the interface shape 
between the two fluids and the drag force on a variety of keels. 
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INTRODUCTION 

In the spring of 1985, D. R. Topham and his colleagues at  the Institute of Ocean Sciences (Sydney, 
British Columbia) conducted a field study of flow under an isolated ice keel at the Barrow Strait in 
the Beaufort Sea. This experiment was aimed at understanding the interaction of the Arctic ice 
pack with the underlying ocean in order to estimate the drag force between them. From the field 
observations, it has been found that the Arctic Ocean is stratified in two distinct layers of water at 
this location. The stratification is determined by the salinity of the water and maintained by the 
melting of the ice pack.’ 

Based on the information gathered in the field, a laboratory experiment was set up at  the 
Institute to look at the flow of two stably stratified fluids flowing under an isolated keel. To study 
this experimentally, an arrangement was devised to tow the keel in a channel containing the fluids 
(fresh and salt water). The keel was attached to a flat board that floated at the free surface of the 
upper fluid. In this study, the experiments were run for keels of the same maximum height but 
varying lengths; in fact a ‘Witch of Agnesi’ family of four two-dimensional topographic models of 
fixed height with increasing surface slopes were used. In addition to recording the interface shape 
between the two fluids, a measurement of the drag force was made for each keel (except for the 
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Figure I ,  Schematic indicating the physical parameters for two-layer flow over an obstacle 

longest keel) for selected values of the towing speed; a detailed account of this is provided in 
Reference 2. 

Some of the early analytical and experimental investigations of this two-layer flow problem 
were conducted by L ~ n g . ~ - ~  In recent years, a comprehensive study of this problem has been 
carried out by Baines.6 Baines proposed a classification scheme similar to that for single fluids 
given by Baines and Davies.' From these studies it can be concluded that the flow of two fluids 
over an isolated ridge is governed by the following dimensionless parameters: 

b H P 2  B =C r = -  s=-. U O  F -  
"~JC(l-s)gh,]' = h,' h,' P I  

These flow parameters are illustrated in Figure 1. 
Previous numerical investigations of this problem have been limited to simple hydraulic 

solutions. These solutions involved solving the shallow-water equations, i.e. flows with one- 
dimensional uniform velocities and hydrostatic-pressure distributions. A notable solution using 
this technique is that of Houghton and Isaacson.' A similar study for single-layer flow has been 
carried out by Houghton and Kasahara.' 

NUMERICAL SOLUTION 

The numerical investigation described in this paper utilizes the two-dimensional Euler equations 
for incompressible flow. The solution of these equations has been obtained by the well-known 
Marker And Cell (MAC) finite differencing scheme developed by Harlow and Welch." One of the 
difficulties experienced in modelling such problems is the management of the free surface or fluid 
interface. This has been handled successfully by the introduction of a volume of fluid function, 
measured at the centre of each finite difference grid cell. Details of the solution technique can be 
found in the program manual for the SOLA-VOF (solution algorithm based on the fractional 
volume of fluid) code." The need to implement such a code for a problem of this type is created by 
the requirement to keep track of a compiex density interface. The .technique uses a finite 
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differencing scheme which advances explicitly in time. It is worthwhile noting that the maximum 
Courant number allowed by the interface convection algorithm is one, so the explicit nature of 
the convection term calculation does not in fact limit the speed with which the solution can be 
obtained. 

The numerical simulations reported here have been carried out at the University of Calgary in 
conjunction with laboratory experiments at the Institute of Ocean Sciences, Sydney, British 
Columbia. The laboratory experiment consists of an inverted keel shape being towed on the 
surface of a stable stratification of salt and fresh water, whereas the numerical model has been set 
up with the obstacle on the bottom of the flume with a rigid lid adjacent to the upper layer fluid as 
illustrated in Figure 1. This difference is of no consequence to the problem being examined here, as 
it is the internal dynamics of the flow that is relevant to the problem, e.g. Reference 6. The results 
selected for discussion in this paper are those for keel # 1, and a listing of the physical parameters 
for both the experimental and numerical models is given in Table I. 

From a series of numerical runs, it was found that a grid cell whose dimensions are of the ratio 
6y  : Sx < 1 : 2 (Sy and 6x are the vertical and horizontal dimensions of a finite difference cell) 
yielded stable solutions. A major concern in any numerical simulation of this nature is the 
duration of the computer time. Computations were repeated for a finer grid, with no significant 
improvements in results. Therefore, to minimize computation time, the ratio 6y : 6x = 1 : 2 was 
used. 

The numerical model consists of a finite difference mesh of 200 uniform grid cells (6x = 2.2 cm) 
in the horizontal direction. In the vertical direction, the mesh is divided into two grid blocks. The 
first grid block is comprised of 10 uniform cells (6y= 1 .1  cm). This block makes up the region 
containing the lower fluid and the obstacle, which is also known as the active layer. Above it is a 
second block described by a non-uniform grid consisting of 20 cells with heights varying as 
follows: 1.1 cm < 6 y <  5.0 cm. This second block contains the upper fluid and is referred to as the 
passive layer. The interface region of these two grid blocks contains two rows of cells (Sy = 1 . 1  cm). 
This facilitates a smooth transition from the uniform to the non-uniform grid. The largest value of 
6 y  is situated at the furthest distance away from the two fluid interface, and in this region the 
velocity and pressure of the fluid did not change much from one time step to the next. Therefore, 
the large ratio of Sy : 6x in this region did not pose a problem in convergence at any time step. 

The ridge shape was generated by blocking off a combination of grid cells to approximate the 
shape of keels, as illustrated in Figure 2 for keel # 1.  The base lengths of all four numerical keels 
are listed in Table TI. The maximum height of all of the obstacles is 5.5 cm and, therefore, only 5 
grid cells are blocked in the vertical direction. This arrangement was chosen so that the obstacle 
height would be half the depth of the first layer of fluid. Despite the jagged shape generated by this 
style of blocking, HirtI2 proposed that the fluid actually 'sees' a shape close to that formed by the 
horizontal steps together with the diagonals depicted by the bold lines in Figure 2. Each diagonal 

Table I. Physical parameters for the numerical and experimental models 

Parameters Numerical Experimental 

Density of fluid # I (g/cm3) 
Density of fluid # 2  (g/cm3) 
Depth of the fluid layer # 1 (cm) 
Total depth for both fluids (cm) 
Maximum obstacle height (cm) 
Length of tank (cm) 

1.02 1.02 
1.00 1.00 

11.00 11.00 
70.00 7000 
5.50 5.50 

440.00 1000.00 
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Figure 2. Illustration of the blocked off cells in the mesh. The bold diagonal lines indicate the final shape seen by the fluid 
(Reference 12) 

Table 11. Maximum keel lengths for the four keels. 
The lengths are measured at the base of the keels 

Keel no. 

1 44 
2 66 
3 88 
4 176 

Maximum keel length (cm) 

in this figure passes through the centre point of that grid cell, where the pressure is determined. 
Thus, the drag force per unit width can easily be obtained by integrating the pressures along the 
surface of the obstacle. 

The boundary conditions for this flow are constant, uniform inflow conditions at the left and 
outflow at the right. All boundary conditions at the floor and the ceiling are free slip, since the 
scales resolved in this problem are much greater than those of the viscous boundary layer. 
Initially, it is assumed that the interface between the two fluids is flat and horizontal and there is a 
uniform flow speed throughout both layers. 

The gravity term in the two-fluid case is reduced by the factor (1 -s) and, therefore, the initial 
velocity needed to start the computations is significantly lower than that for the identical single- 
layer fluid flow problem with the same active layer depth. This translates into a relatively more 
slowly changing flow field than the one with only a single fluid; see, for example, Reference 13. 
Thus, in order to establish a reasonably quasi-steady flow, the computations had to be carried to a 
time t of at  least 20 s. 

INTERFACE RESULTS 

The numerical runs were made for a variety of upstream Froude numbers F,, ranging from 0.2 to 
1.7 in 0-1 steps. These runs were conducted for a single value of B, = 0.5, r = 70/11= 6-36 and 
s =  098. The interface shapes predicted by the numerical model for F, =0.5,0.7, 1.0, 1.3 and 1.7 at 
times of LO s and 20 s are shown in Figure 3. The interface shapes obtained from the laboratory 
experiments at F0=054, 071, 1.04, 1.27 and 1.68 are also displayed in this figure. The line 
identified as the ‘theoretical profile’ is the solution based on hydraulic theory, i.e. the fluid is 
assumed to have a single component of velocity (horizontal), which is uniform in the vertical 
direction, and the pressure distribution in the fluid is assumed to be hydrostatic. It can be seen that 
there is a very good match between the numerical model and the laboratory experiment for all of 
the Froude number cases. 
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When F, = 0-5 (Figure 3(a)), a well-defined upstream bore is produced with a hydraulic control 
at  the crest of the obstacle, as would be predicted by simple hydraulic theory. However, when 
F,  = 0.7 (Figure 3(b)), the upstream interface consists of a bulge that appears to be anchored at the 
crest of the obstacle and stretches laterally in the upstream direction with time. It is this type of 
behaviour that Houghton and Isaacson8 and Baines6 refer to as a rarefaction; this significant 
change in the type of upstream blocking does not occur in single-layer fluid flows. The computer 
program maintains the initial conditions at the outflow end of the grid in a manner similar to a 
weir with its associated hydraulic control. For this reason, the downstream flow deviates 
significantly from the experimentally observed supercritical jet for these subcritical flows. 

For F, = 1-0 (Figure 3(c)), the upstream blocking seen in the higher Froude number subcritical 
flows has diminished substantially. Instead, an almost symmetrical interface shape similar to that 
for supercritical flow at high Froude numbers is formed. It appears that an intermediate flow 
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Figure 3. Comparison of the numerical and experimental interface shape between the two fluids for various Froude 
numbers. The theoretical profile is for a hydraulic type flow. The experimental data were obtained with a video camera at a 

fixed distance from the starting point. The results are for keel # 1 
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structure occurs in the lower Froude number supercritical flows that is distinctly two-dimensional 
in nature and cannot, therefore, be modelled by simple hydraulic theory. The simplest two- 
dimensional feature that could fit such a shape is a stationary solitary wave. Similar remarks apply 
for the F, = 1-3 case as shown in Figure 3(d). 

For supercritical flows with higher Froude number such as F, = 1.7, it is seen in Figure 3(e) that 
a noticeable swelling of the interface occurs on the lee side of the obstacle. A closer look at this 
region of the flow shows the presence of a recirculation zone, as can be seen in the plot of the 
stream lines on the lee side of the keel in Figure 4. This recirculation bubble is also found to exist 
for slightly lower Froude numbers (F,  = 1-5 and 1.6). The appearance of such a two-dimensional 
flow feature could possibly be what Baines6 had to model as a ‘hydraulic drop’, due to limitations 
of hydraulic theory. Surprisingly, the flow phenomenon computed here occurs with a free-slip 
boundary condition and with a grid size larger than the boundary layer thickness. Experimental 
observations reveal boundary layer separation close to the crest of the keel leading to a similar 
interface shape. The same type of results have been reported for a similar finite-volume numerical 
code by HirtI4 for the flow of a continuous fluid over a backward facing step. 
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Figure 4. Plot of the stream-lines in the lower part of the active layer on the lee side of the keel. The centre of the keel is 
located 220 cm from the inlet section 
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Figure 5.  Comparison of the numerical and experimental interface shape between the two fluids for keel #4. The 
theoretical profile is for a hydraulic type flow. The experimental data were obtained with a video camera at a fixed distance 

from the starting point 

In contrast to the flow behaviour over keel # 1 (for F,, = 1.7), the longest obstacle, keel #4, 
produces an interface shape that is very close to that predicted by hydraulic theory, see Figure 5. 
This theory suggests that the shape of the interface over the obstacle should be in the form of a 
symmetrical hump for Fo = 1.7. It can be seen in Figure 5 that all three results (experimental data, 
hydraulic theory and numerical model) are in harmony. The lee side antisymmetric flow feature 
seen for keel # 1 is not present. The lee side stream functions have also been computed for keel # 4, 
and these results are plotted in Figure 6. It is seen that in this case the lee side vortex is totally 
absent. Naturally, one can conclude that it is the mild shape of keel # 4 that leads to the difference 
in results. 

DRAG RESULTS 

The drag force experienced by the ridge has been calculated by integrating the pressure obtained 
from the numerical simulation along the ridge surface; the width of the keel is 30cm. A 
comparison of these numerical results with the laboratory keel drag forces for keel # 1 is provided 
in Figure 7. The experimental results are slightly higher than the numerical predictions. This is to 
be expected because the numerical model is only solving the Euler equations and, therefore, does 
not account for viscous forces. 

The drag force rises to a maximum around Fo=0.7 and then it falls with increasing Froude 
number. This relatively rapid drop in drag is due to the change in the type of upstream blocking as 
discussed in the previous section. Both the numerical and experimental results follow this trend 
until the flow is supercritical (Fo-  1.1), when once again the drag rises with increasing Froude 
number. Experimental observations reveal a separation of the boundary layer on the lee side of the 
obstacle at  this point, while the numerical code gives rise to the development of a recirculation 
zone in response to the overshooting of the numerical velocity field beyond the crest of the 
obstacle. Surprisingly, these two models predict almost the same drag behaviour but for different 
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Figure 6 .  Plot of stream-lines in the lower part of the active layer on the lee side of the keel. The centre of the keel is located 
374 cm from the inlet section 

reasons. The net effect in either case is a similar elevation of the lee side interface as seen in 
Figure 3(e) for F, = 1.7, which results in approximately the same increase in drag. This type of 
recirculation can never be identified in numerical schemes using the one-dimensional shallow- 
water equations, which can result in the prediction of an unrealistic phenomena known in the 
literature as a hydraulic drop (e.g. Reference 6). 

The experimental drag force on keel # 1 in unstratified water is also shown in Figure 7. It can be 
seen that there is a large increase in drag for subcritical stratified flow compared to the unstratified 
case. In the supercritical range, the drag force for stratified flow is lower than that for unstratified 
flow because the stable stratification suppresses the size of the lee side recirculating region. 

The values of the drag force based on hydraulic assumptions are also indicated in Figure 7. 
These values are significantly larger than the experimental observations, and in addition to this it 
can be seen that the experimental turning points in Figure 7 cannot be predicted by hydraulic 
theory. This is a direct result of the over simplification of the hydraulic model as compared to the 
two-dimensional numerical model. 

The results for the drag force discussed so far are those for the shortest keel (keel # 1). Figure 8 
provides the results for the drag force for keel # 4 (longest keel). The inertia of keel # 4 is too large 
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Figure 7. Drag force on keel # 1 as a function of the flow speed. ( F ,  = 1.0 when the upstream flow speed is 14.54 cm/s. The 
width of the keel is 30 cm) 

to allow the experimental measurement of the drag force with reasonable accuracy, and for this 
keel the only data presented are those obtained through the numerical simulations. In addition to 
the numerical results, the drag force predictions based on hydraulic theory are also plotted. It can 
be seen clearly that the trends for keel # 1, as shown in Figure 7, are not all present here. The most 
noticeable difference in these numerical results is the absence of the second turning point 
(minimum) associated with the lee side recirculation. As discussed previously, it is not surprising 
that this feature is absent; see Figures 4 and 6. The hydraulic results follow the general trends of 
the numerical predictions; however, they are about twice as large. The reason for this is that, 
despite the mildness of the fourth keel, there is still a significant two-dimensional nature to the flow 
in the vicinity of the obstacle. The importance of this has been demonstrated previously for single- 
layer flow in plots of the lee side velocity and pressure; see, for example, Reference 13. 

Further numerical studies of the lee side recirculating zone have also been undertaken; these 
studies looked at the effect of reducing the grid size on this vortex. It was found that reducing the 
grid size had no significant effect on this zone, and for all practical purposes the results were 
identical. In addition, computations have been made for ridges with shapes similar to the two 
other laboratory keels # 2 and # 3 in the same way as those reported here for keels # 1 and # 4. 
A review of all these results is available in a recent Ph.D. thesis by Jameel." 

Finally, simple skin-friction calculations have been made for a smooth flat plate and these 
calculations show that a plate of % 70 m length is required to produce the same drag as the 
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Figure 8. Drag force on keel # 4 as a function of the flow speed. ( F ,  = 1.0 when the upstream flow speed is 14.54 cm/s. The 
width of the keel is 30 cm) 

maximum drag found for laboratory keel # 1. The typical Froude number for actual oceanic flow 
under real keels is normally in the range 0 2  to 0.4,' i.e. less than the Froude number of 0.7 for 
maximum drag. Depending on the spacing and distribution of ice keels, the drag force generated 
by these keels may be the major component of the total drag (hydrodynamic) force on the ice pack. 
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APPENDIX: NOMENCLATURE 

obstacle crest height 
dimensionless obstacle height (h,/h,) 
upstream bore speed 
upstream Froude number 
gravitational acceleration 
upstream fluid depth of the active layer 
total fluid depth of the two layers 
fluid depth ratio (H/h,) 
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S 

t 
UO 
6 X  

P I  
P2 

6Y 

fluid density ratio ( p J p l )  
time 
initial upstream fluid flow speed 
horizontal grid cell size 
vertical grid cell size 
fluid density for layer # 1 
fluid density for layer # 2 
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